Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis.
نویسندگان
چکیده
Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(-) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na(+)-HCO(3)-cotransport activity has not been detected in mammalian lens epithelia, cell pH (pH(i)) measurements revealed the presence of Cl(-)-independent, electrogenic Na(+)-HCO(3)-cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pH(i) recovery from acid load in the presence of HCO(3)(-)/CO(2) was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO(3)-transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.
منابع مشابه
Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis.
Proximal renal tubular acidosis (pRTA) results from an impairment of bicarbonate (HCO(3)(-)) reabsorption in the renal proximal tubules and is characterized by a decreased renal HCO(3)(-) threshold. Proximal RTA most commonly occurs in association with multiple defects of proximal tubular transport (renal Fanconi syndrome). Although much more rare, pRTA may occur without other functional defect...
متن کاملFunctional Roles of Electrogenic Sodium Bicarbonate Cotransporter NBCe1 in Ocular Tissues
Electrogenic Na(+)-HCO(3) (-) cotransporter NBCe1 is expressed in several tissues such as kidney, eye, and brain, where it may mediate distinct biological processes. In particular, NBCe1 in renal proximal tubules is essential for the regulation of systemic acid/base balance. On the other hand, NBCe1 in eye may be indispensable for the maintenance of tissue homeostasis. Consistent with this view...
متن کاملImmunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye.
The human NBC1 gene encodes two electrogenic sodium-bicarbonate cotransport proteins, pNBC1 and kNBC1, which are candidate proteins for mediating electrogenic sodium-bicarbonate cotransport in ocular cells. Mutations in the coding region of the human NBC1 gene in exons common to both pNBC1 and kNBC1 result in a syndrome with a severe ocular and renal phenotype (blindness, band keratopathy, glau...
متن کاملCALL FOR PAPERS Protein and Vesicle Trafficking, Cytoskeleton The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia
Toye, Ashley M., Mark D. Parker, Christopher M. Daly, Jing Lu, Leila V. Virkki, Marc F. Pelletier, and Walter F. Boron. The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 291: C788–C801, 2006. First published May 17, 2006; doi:10.1152/ajpcell.00094.2006.—The human electrogen...
متن کاملProximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1).
PURPOSE The electrogenic Na+/HCO3- cotransporter (NBCe1) plays a major role in renal bicarbonate absorption via proximal tubules and therefore is crucial for maintaining normal blood pH. The human gene for NBCe1 (SLC4A4) produces two major transcripts by alternative promoter usage (kNBCe1, originally cloned from kidney and pNBCe1, pancreatic/general form). Though rare, recessive SLC4A4 mutation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 108 1 شماره
صفحات -
تاریخ انتشار 2001